
G E N E R A L I Z A T I O N  OF T H E  B E A M  A P P R O A C H  

T O  P R O B L E M S  OF C R A C K  T H E O R Y  

A. M~ M i k h a i l o v  

This note supplements a previous art icle  [1] devoted to the problem of the motion of a c rack  along a 
bar, where it was assumed that the behavior of the bar is quite accura te ly  descr ibed by the Bernoul l i -  
Euler beam theory. Below(section 1) the formulation of the problem is extended to the two-dimensional  
case,  i.e., to the case of c rack  propagation along the middle surface  of a thin plate. This kind of problem 
can be reproduced exper imental ly  using layered or laminated mater ia ls .  In section 2 the beam formulation 
is general ized in another direction: in describing the  behavior of a bar the effect of the shearing force on 
deflection and, moreover ,  the inert ia of rotat ion of c ro s s  sections of the bar are  taken into account. Con- 
siderat ion of these factors  ensures  the existence of a limiting c rack  propagation velocity. The equations 
presented  were  obtained by a variat ional  method from the principle of least  action; the calculations have 
been omitted because of their s imi lar i ty  to those in [1] and because, though clumsy, they are  relat ively e le -  
mentary.  

1. We consider  the motion of a c rack  along the middle surface of a thin plate of thickness 2H, whose 
mater ia l  possesses  density p and elast ic constants E (Young's modulus) and u (Poisson ' s  ratio), while the 
res i s t ance  to c rack  propagation is cha rac te r i zed  by the surface energy density T. Let the c rack  lie in the 
xy-p lane  and at t ime t occupy a region D(t) bounded by the p iecewise-smooth  closed contour C(t). We de-  
note the normal displacement of the neutral  surface of one of the halves of the plate by u(x, t); we assume 
that the plate is loaded by an external  force of density p(x, y, t) piecewise-continuous in D + C. Conditions 
of r igid  r e s t r a in t  are  assumed on the contour C(t) (n is the normal  to the contour) 
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The express ions  for the kinetic and potential energies  take the form 
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where A is a two-dimensional  Laplacian. 

The f i rs t  integral in II is equal to the flexural energy [2], the second to the workdone on creat ing a 
new surface,  while the third is the potential of the external forces .  F r o m  the condition of s tat ionari ty of the 
action integral  with conditions (1.1) at the moving boundary C(t) of the three-dimensional  r eg ion t  ~ [tl, t2] , 
(x, y) ~ D(t) we obtain the following probiem: we are  required to find a function, continuous with part ial  
der ivat ives  up to second order  with respec t  to t and up to fourth o rder  with respec t  to x and y, and a con-  
tour C(t) such that with 
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conditions (1.1) are  satisfied and at t = 0 cer tain initial data compatible with (1.1) and (1o3)o If we assume 
loading by concentrated forces  and moments ,  it is sufficient to require  only the continuity of the displace-  
ment with f i rs t  part ial  derivatives.  Conditions (1.1) and (1.3) ensure  the smoothness of the contour C(t): 
from the expression for the shearing force on the fixed contour (Eq. (12.9) from [2]) 

EHa ( OSu OZu \ 
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it follows that, as a consequence of (1.3), at corner  points there  would be a concentrated react ion;  this is 
impossible for a res t ra ined,  slightly flexed plate. 

As an example, we consider  the case of propagation of a c i rcu la r  crack,  whose surface is free of load 
everywhere  except at the center,  while at the center the distance 2h between opposite edges increases  at the 
constant ra te  2U. Making the substitution 

1.2 
u (x, y, t) = Ut/(~),  ~ = a# ' r2_-=x2-[- y2 

in (1.1)-(1.3) and solving the ordinary  differential equation obtained, we find equations for the radius of the 
c r ack  R and the displacement u: 
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In these equations si, ci  denote the integral sine and cosine. 

For  the case of infinitely slow motion by passing to the limit as X--0 we obtain the radius  of the 
equilibrium crack  

R ~ ~ 2h / A1 

2. Let us formulate the problem of the development of a c rack  along a bar using Timoshenko 's  beam 
approximation [3] to descr ibe the motion of the bar, i.e., taking into account the shear  potential energy and 
the kinetic energy of rotational motion of c r o s s  sections of the bar. Let the axis of absc issas  be directed 
along the bar; b and H are the t r ansve r se  dimensions of one half of the bar, and I = bH3/12 is the static 
moment of inertia of the c ros s  section of that h a l l  The c rack  is located on the interval 0 -< x - l (t). At 
x = 0 we assign a t r ansve r se  load F(t) and bending moment  M(t) as functions of time, while at x =/(t)  the 
beam is r igidly clamped. We rep resen t  the slope of the neutral axis 0 u/Ox as the sum of a rotation w and 
shear  7 and write the kinetic and potential energies:  
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We find the equations of motion and the necessary  boundary conditions f rom the condition of s tat ion-  
a r i ty  of the action integral for  conditions of r igid res t ra in t  at the end of the crack:  

u (l) = 0, o (l) = 0 (2.1) 

We present  the resul t :  
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Equat ions  (2.2) co inc ide  with the equa t ions  for  [ l] ,  [m] f r o m  [3]. The  f i r s t  and second  of t he se  e q u a -  
t ions  e x p r e s s  NewtonWs second  law for  the t r ans l a t i ona l  and ro ta t iona l  mo t ions  of  an e l emen t  of the bar .  By 
m e a n s  of  d i f fe ren t ia t ions  we can e l imina te  w f r o m  (2.2) and obtain a f o u r t h - o r d e r  equat ion for  u(x, t); how-  
eve r ,  this  will  not w o r k  with the boundary  condi t ions .  Since the mot ion  of  the c r a c k  is a c c o m p a n i e d  by the 
s imul t aneous  mot ion  of  two beams ,  in o r d e r  to exc lude  the pos s ib i l i t y  of  over lapp ing  of  the edges  of  the 
c r a c k  it is n e c e s s a r y  to r e qu i r e  tha t  the d i sp l acemen t  does  not change  s ign at 0 -< x -< l .  F r o m  (2.4) t he re  
fol lows the imposs ib i l i t y  of  p ropaga t ion  of  the c r a c k  at a ve loc i ty  exceed ing  the longitudinal  wave ve loc i ty .  
When t h e B e r n o u l l i - E u l e r  a p p r o x i m a t i o n  is employed,  the ve loc i ty  of the c r a c k  m a y  be a r b i t r a r i l y  l a r g e  
[11. 

Cons ide r  the s t eady  c leav ing  ac t ion  of  a wedge of th ickness  2h moving  at  ve loc i ty  V. In th is  c a s e  

u (x,  t) = u (x - -  Vt) ,  

(~ (x, t) = (o (x - -  Vt) ,  d l  ] dt  = V at x = Vt  

u =  h, Oo) / Ox = 0, at x =  Vt  + l 

condi t ions  (2.1) and (2.4) a r e  sa t i s f ied .  Af te r  subst i tu t ing ~ = x - V t  we e a s i l y  find u(~), w(X); 

h~ (i -- ~2) V 
C = sin a / - - ( t  --~)ct l  cos al  ' ce ~ a  (1 --~2)-V2(t --~02) -V~ 

~ = V / c ~ ,  ~0 = V / c o  

Using  (2.4), we obtain a r e l a t i on  between the c l eavage  r a t e  and the length of the c r a c k  in f ron t  of  the 
wedge  

,,[sin a l - -  (1 --$~) al cos all (,t 7:, 13o~)'(2 , h~d$2 ~ 
(2.5) 

If  the s h e a r  s t i f fness  is infinte (f12 = 0) and the p ropaga t ion  ve loc i ty  is sma l l  (rio << 1), so that  r o t a -  
t ional  ine r t i a  does not p lay  an  i m p o r t a n t  par t ,  then v~ ~ V/a and (2 .5 )g ives  the solut ion of  the wedge p r o b l e m  
in the B e r n o u l l i - E u l e r  app rox ima t ion  

VI .  l ( V I .  1 ~  i (VI . '~ '  3h (2.6) 
l ---~- T. ctg \ -~ -~]  = -~- \--~-] ~ l.~= ~- 

w h e r e  l .  is the equ i l ib r ium length of the c r a c k  in the B e r n o u l l i - E u l e r  approx ima t ion  [see [1], Eq. (2.5)]. 

In this  c a s e  [ / / ,  is d e t e r m i n e d  by only  one d i m e n s i o n l e s s  p a r a m e t e r  V / , / a .  Re la t ion  (2.6) is shown 
in Fig.  1. The  dashed  l ines  r e p r e s e n t  so lu t ions  for  which for  at  l eas t  one po in tx  lying between 0 and/,u(~( ) < 0 
and which,  consequent ly ,  cannot  be used to d e s c r i b e  the mot ion  of  the c rack .  Unfor tunate ly ,  in [1] the m u l t i -  
va luednes s  of  the length in the c a s e  of  s t eady  wedge ac t ion was  ove r looked  and on ly the  g raph  pass ing  through 
1 / l ,  = 1 was  p re sen ted .  

Le t  us now c o n s i d e r  s low mot ions ,  a s s u m i n g  that  the ba r  has  a finite s h e a r  s t i f fness .  As before ,  we 
take ~ ~ V / a ;  however ,  f12~ 0. Rep lac ing  the t r i g o n o m e t r i c  funct ions  in (2.5) by s e g m e n t s  of a Tay lo r  s e r i e s  
and neg lec t ing  h i g h - o r d e r  in f in i t e s ima l s  as  V-*0,  we obtain an equat ion for  the length of the c r a c k  l0 in 
f ron t  of  the s t a t i ona ry  wedge:  
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h ~' a~ a 4 _ ~_~) l0 ~ = 9h~a2 (2.7) 

Div id ing  (2.7) by [.G, we ob ta in  the  r e l a t i o n s h i p  be tween  l 0 / / ,  and a / c 2 / , .  T h i s  r e l a t i o n s h i p ,  which  
m a k e s  i t  p o s s i b l e  to d e t e r m i n e  when the  s h e a r  po t en t i a l  e n e r g y  can  be d i s r e g a r d e d ,  i s  shown in Fig~ 2. As  
a / c 2 / ,  - -  r the  length  of  the  c r a c k  t e n d s  to  z e r o .  

F o r  l a r g e  c l e a v a g e  r a t e s ,  we f ind  tha t  m o t i o n s  wi th  v e l o c i t i e s  V > c 2 a r e  i m p o s s i b l e ,  s i n c e  the  l e f t -  
hand s ide  of  (2.5) b e c o m e s  p u r e l y  i m a g i n a r y  a t  f12 > 1. I n v e s t i g a t i o n  shows  tha t  fo r  each  v e l o c i t y  V < c 2 
t h e r e  i s  an in f in i te  s e t  of c r a c k  l eng ths  in f ron t  of  the  wedge ,  so tha t  the  g r a p h  of l (V) h a s  an in f in i t e  s e t  of 
b r a n c h e s .  I f  h c l / a 2 A  - (1 -c~ /c~) l /2 ,  a l l  the  b r a n c h e s  l i e  on the  i n t e r v a l  0 -< V --- c 2 and p a s s  th rough  the  
po in t  l = 0, V = c 2" H o w e v e r ,  i f  h c l / a a A  > (1 -c2/CI)1/2 ,  then a l l  the  b r a n c h e s  a r e  cu t  off a t  V < c2, and  the  
h i g h e r  the  b r anch ,  the  m o r e  c l o s e l y  i t  a p p r o a c h e s  the  po in t  l = 0, V = c 2. 

In the  c a s e  c o n s i d e r e d  the  c h o i c e  of  a p a r t i c u l a r  c r a c k  length  i s  d e t e r m i n e d  by the  i n i t i a l  cond i t ions .  

I t  shou ld  not be c o n c l u d e d  f r o m  th i s  e x a m p l e  tha t  c 2 in the  T i m o s h e n k o  a p p r o x i m a t i o n  i s  the  l i m i t i n g  
v e l o c i t y  for  m o t i o n  of  the  c r a c k  u n d e r  any cond i t ions .  To conv ince  o n e s e l f  of t h i s  i t  i s  su f f i c i en t  to c o n s i d e r  
the  s t e a d y - s t a t e  p r o p a g a t i o n  of a c r a c k  a c t i v a t e d  by a c o n c e n t r a t e d  m o m e n t  e x c e e d i n g  ~ o  
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